(资料图片仅供参考)
【相关推荐:javascript视频教程、web前端】
什么是二叉树
二叉树是每个节点最多只能有两个子节点的树,如下图所示:
一个二叉树具有以下几个特质:
第i
层的节点最有只有2^(i-1)
个;如果这颗二叉树的深度为k
,那二叉树最多有2^k-1
个节点;在一个非空的二叉树中,若使用n0
表示叶子节点的个数,n2
是度为2的非叶子节点的个数,那么两者满足关系n0 = n2 + 1
。满二叉树
如果在一个二叉树中,除了叶子节点,其余的节点的每个度都是2,则说明该二叉树是一个满二叉树,
如下图所示:
满二叉树除了满足普通二叉树特质,还具有如下几个特质:
满二叉树的的第n
层具有2^(n-1)
个节点;深度为k
的满二叉树一定存在2^k-1
个节点,叶子节点的个数为2^(k-1)
;具有n
个节点的满二叉树的深度为log_2^(n+1)
。完全二叉树
如果一个二叉树去掉最后一次层是满二叉树,且最后一次的节点是依次从左到右分布的,则这个二叉树是一个完全二叉树,
如下图所示:
二叉树的存储
存储二叉树的常见方式分为两种,一种是使用数组存储,另一种使用链表存储。
数组存储
使用数组存储二叉树,如果遇到完全二叉树,存储顺序从上到下,从左到右,如下图所示:
如果是一个非完全二叉树,如下图所示:
需要先将其转换为完全二叉树,然后在进行存储,如下图所示:
可以很明显的看到存储空间的浪费。
链表存储
使用链表存储通常将二叉树中的分为3个部分,如下图:
这三个部分依次是左子树的引用,该节点包含的数据,右子树的引用,存储方式如下图所示:
与二叉树相关的算法
以下算法中遍历用到的树如下:
// tree.jsconst bt = { val: "A", left: { val: "B", left: { val: "D", left: null, right: null }, right: { val: "E", left: null, right: null }, }, right: { val: "C", left: { val: "F", left: { val: "H", left: null, right: null }, right: { val: "I", left: null, right: null }, }, right: { val: "G", left: null, right: null }, },}module.exports = bt
深度优先遍历
二叉树的深度优先遍历与树的深度优先遍历思路一致,思路如下:
访问根节点;访问根节点的left
访问根节点的right
重复执行第二三步实现代码如下:
const bt = { val: "A", left: { val: "B", left: { val: "D", left: null, right: null }, right: { val: "E", left: null, right: null }, }, right: { val: "C", left: { val: "F", left: { val: "H", left: null, right: null }, right: { val: "I", left: null, right: null }, }, right: { val: "G", left: null, right: null }, },}function dfs(root) { if (!root) return console.log(root.val) root.left && dfs(root.left) root.right && dfs(root.right) }dfs(bt)/** 结果A B D E C F H I G*/
广度优先遍历
实现思路如下:
创建队列,把根节点入队把对头出队并访问把队头的left
和right
依次入队重复执行2、3步,直到队列为空实现代码如下:
function bfs(root) { if (!root) return const queue = [root] while (queue.length) { const node = queue.shift() console.log(node.val) node.left && queue.push(node.left) node.right && queue.push(node.right) }}bfs(bt)/** 结果A B C D E F G H I */
先序遍历
二叉树的先序遍历实现思想如下:
访问根节点;对当前节点的左子树进行先序遍历;对当前节点的右子树进行先序遍历;如下图所示:
递归方式实现如下:
const bt = require("./tree")function preorder(root) { if (!root) return console.log(root.val) preorder(root.left) preorder(root.right)}preorder(bt)/** 结果A B D E C F H I G*/
迭代方式实现如下:
// 非递归版function preorder(root) { if (!root) return // 定义一个栈,用于存储数据 const stack = [root] while (stack.length) { const node = stack.pop() console.log(node.val) /* 由于栈存在先入后出的特性,所以需要先入右子树才能保证先出左子树 */ node.right && stack.push(node.right) node.left && stack.push(node.left) }}preorder(bt)/** 结果A B D E C F H I G*/
中序遍历
二叉树的中序遍历实现思想如下:
对当前节点的左子树进行中序遍历;访问根节点;对当前节点的右子树进行中序遍历;如下图所示:
递归方式实现如下:
const bt = require("./tree")// 递归版function inorder(root) { if (!root) return inorder(root.left) console.log(root.val) inorder(root.right)}inorder(bt)/** 结果D B E A H F I C G*/
迭代方式实现如下:
// 非递归版function inorder(root) { if (!root) return const stack = [] // 定义一个指针 let p = root // 如果栈中有数据或者p不是null,则继续遍历 while (stack.length || p) { // 如果p存在则一致将p入栈并移动指针 while (p) { // 将 p 入栈,并以移动指针 stack.push(p) p = p.left } const node = stack.pop() console.log(node.val) p = node.right }}inorder(bt)/** 结果D B E A H F I C G*/
后序遍历
二叉树的后序遍历实现思想如下:
对当前节点的左子树进行后序遍历;对当前节点的右子树进行后序遍历;访问根节点;如下图所示:
递归方式实现如下:
const bt = require("./tree")// 递归版function postorder(root) { if (!root) return postorder(root.left) postorder(root.right) console.log(root.val)}postorder(bt)/** 结果D E B H I F G C A*/
迭代方式实现如下:
// 非递归版function postorder(root) { if (!root) return const outputStack = [] const stack = [root] while (stack.length) { const node = stack.pop() outputStack.push(node) // 这里先入left需要保证left后出,在stack中后出,就是在outputStack栈中先出 node.left && stack.push(node.left) node.right && stack.push(node.right) } while (outputStack.length) { const node = outputStack.pop() console.log(node.val) }}postorder(bt)/** 结果D E B H I F G C A*/
【相关推荐:javascript视频教程、web前端】
以上就是详细介绍JavaScript二叉树及各种遍历算法的详细内容,更多请关注php中文网其它相关文章!