>首页> IT >

每日精选:Redis实现分布式锁的五种方法总结

时间:2022-09-14 17:48:14       来源:转载

本篇文章给大家带来了关于Redis的相关知识,在分布式架构中,我们同样会遇到数据共享操作问题,使用Redis来解决分布式架构中的数据一致性问题,下面一起来看一下,希望对大家有帮助。


(资料图片仅供参考)

推荐学习:Redis视频教程

在单体应用中,如果我们对共享数据不进行加锁操作,会出现数据一致性问题,我们的解决办法通常是加锁。

在分布式架构中,我们同样会遇到数据共享操作问题,本文章使用Redis来解决分布式架构中的数据一致性问题。

1. 单机数据一致性

单机数据一致性架构如下图所示:多个可客户访问同一个服务器,连接同一个数据库。

场景描述:客户端模拟购买商品过程,在Redis中设定库存总数剩100,多个客户端同时并发购买。

@RestControllerpublic class IndexController1 {    @Autowired    StringRedisTemplate template;    @RequestMapping("/buy1")    public String index(){        // Redis中存有goods:001号商品,数量为100        String result = template.opsForValue().get("goods:001");        // 获取到剩余商品数        int total = result == null ? 0 : Integer.parseInt(result);        if( total > 0 ){            // 剩余商品数大于0 ,则进行扣减            int realTotal = total -1;            // 将商品数回写数据库            template.opsForValue().set("goods:001",String.valueOf(realTotal));            System.out.println("购买商品成功,库存还剩:"+realTotal +"件, 服务端口为8001");            return "购买商品成功,库存还剩:"+realTotal +"件, 服务端口为8001";        }else{            System.out.println("购买商品失败,服务端口为8001");        }        return "购买商品失败,服务端口为8001";    }}

使用Jmeter模拟高并发场景,测试结果如下:

测试结果出现多个用户购买同一商品,发生了数据不一致问题!

解决办法:单体应用的情况下,对并发的操作进行加锁操作,保证对数据的操作具有原子性

synchronizedReentrantLock
@RestControllerpublic class IndexController2 {// 使用ReentrantLock锁解决单体应用的并发问题Lock lock = new ReentrantLock();@AutowiredStringRedisTemplate template;@RequestMapping("/buy2")public String index() {    lock.lock();    try {        String result = template.opsForValue().get("goods:001");        int total = result == null ? 0 : Integer.parseInt(result);        if (total > 0) {            int realTotal = total - 1;            template.opsForValue().set("goods:001", String.valueOf(realTotal));            System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001");            return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001";        } else {            System.out.println("购买商品失败,服务端口为8001");        }    } catch (Exception e) {        lock.unlock();    } finally {        lock.unlock();    }    return "购买商品失败,服务端口为8001";}}

2. 分布式数据一致性

上面解决了单体应用的数据一致性问题,但如果是分布式架构部署呢,架构如下:

提供两个服务,端口分别为80018002,连接同一个Redis服务,在服务前面有一台Nginx作为负载均衡

两台服务代码相同,只是端口不同

80018002两个服务启动,每个服务依然用ReentrantLock加锁,用Jmeter做并发测试,发现会出现数据一致性问题!

3. Redis实现分布式锁

3.1 方式一

取消单机锁,下面使用redisset命令来实现分布式加锁

SET KEY VALUE [EX seconds] [PX milliseconds] [NX|XX]

EX seconds 设置指定的到期时间(以秒为单位)PX milliseconds 设置指定的到期时间(以毫秒为单位)NX 仅在键不存在时设置键XX 只有在键已存在时才设置
@RestControllerpublic class IndexController4 {    // Redis分布式锁的key    public static final String REDIS_LOCK = "good_lock";    @Autowired    StringRedisTemplate template;    @RequestMapping("/buy4")    public String index(){        // 每个人进来先要进行加锁,key值为"good_lock",value随机生成        String value = UUID.randomUUID().toString().replace("-","");        try{            // 加锁            Boolean flag = template.opsForValue().setIfAbsent(REDIS_LOCK, value);            // 加锁失败            if(!flag){                return "抢锁失败!";            }            System.out.println( value+ " 抢锁成功");            String result = template.opsForValue().get("goods:001");            int total = result == null ? 0 : Integer.parseInt(result);            if (total > 0) {                int realTotal = total - 1;                template.opsForValue().set("goods:001", String.valueOf(realTotal));                // 如果在抢到所之后,删除锁之前,发生了异常,锁就无法被释放,                // 释放锁操作不能在此操作,要在finally处理// template.delete(REDIS_LOCK);                System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001");                return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001";            } else {                System.out.println("购买商品失败,服务端口为8001");            }            return "购买商品失败,服务端口为8001";        }finally {            // 释放锁            template.delete(REDIS_LOCK);        }    }}

上面的代码,可以解决分布式架构中数据一致性问题。但再仔细想想,还是会有问题,下面进行改进。

3.2 方式二(改进方式一)

在上面的代码中,如果程序在运行期间,部署了微服务jar包的机器突然挂了,代码层面根本就没有走到finally代码块,也就是说在宕机前,锁并没有被删除掉,这样的话,就没办法保证解锁

所以,这里需要对这个key加一个过期时间,Redis中设置过期时间有两种方法:

template.expire(REDIS_LOCK,10, TimeUnit.SECONDS)template.opsForValue().setIfAbsent(REDIS_LOCK, value,10L,TimeUnit.SECONDS)

第一种方法需要单独的一行代码,且并没有与加锁放在同一步操作,所以不具备原子性,也会出问题

第二种方法在加锁的同时就进行了设置过期时间,所有没有问题,这里采用这种方式

调整下代码,在加锁的同时,设置过期时间:

// 为key加一个过期时间,其余代码不变Boolean flag = template.opsForValue().setIfAbsent(REDIS_LOCK,value,10L,TimeUnit.SECONDS);

这种方式解决了因服务突然宕机而无法释放锁的问题。但再仔细想想,还是会有问题,下面进行改进。

3.3 方式三(改进方式二)

方式二设置了key的过期时间,解决了key无法删除的问题,但问题又来了

上面设置了key的过期时间为10秒,如果业务逻辑比较复杂,需要调用其他微服务,处理时间需要15秒(模拟场

景,别较真),而当10秒钟过去之后,这个key就过期了,其他请求就又可以设置这个key,此时如果耗时15

的请求处理完了,回来继续执行程序,就会把别人设置的key给删除了,这是个很严重的问题!

所以,谁上的锁,谁才能删除

@RestControllerpublic class IndexController6 {    public static final String REDIS_LOCK = "good_lock";    @Autowired    StringRedisTemplate template;    @RequestMapping("/buy6")    public String index(){        // 每个人进来先要进行加锁,key值为"good_lock"        String value = UUID.randomUUID().toString().replace("-","");        try{            // 为key加一个过期时间            Boolean flag = template.opsForValue().setIfAbsent(REDIS_LOCK, value,10L,TimeUnit.SECONDS);            // 加锁失败            if(!flag){                return "抢锁失败!";            }            System.out.println( value+ " 抢锁成功");            String result = template.opsForValue().get("goods:001");            int total = result == null ? 0 : Integer.parseInt(result);            if (total > 0) {                // 如果在此处需要调用其他微服务,处理时间较长。。。                int realTotal = total - 1;                template.opsForValue().set("goods:001", String.valueOf(realTotal));                System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001");                return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001";            } else {                System.out.println("购买商品失败,服务端口为8001");            }            return "购买商品失败,服务端口为8001";        }finally {            // 谁加的锁,谁才能删除!!!!            if(template.opsForValue().get(REDIS_LOCK).equals(value)){                template.delete(REDIS_LOCK);            }        }    }}

这种方式解决了因服务处理时间太长而释放了别人锁的问题。这样就没问题了吗?

3.4 方式四(改进方式三)

在上面方式三下,规定了谁上的锁,谁才能删除,但finally快的判断和del删除操作不是原子操作,并发的时候也会出问题,并发嘛,就是要保证数据的一致性,保证数据的一致性,最好要保证对数据的操作具有原子性。

Redisset命令介绍中,最后推荐Lua脚本进行锁的删除,地址

@RestControllerpublic class IndexController7 {    public static final String REDIS_LOCK = "good_lock";    @Autowired    StringRedisTemplate template;    @RequestMapping("/buy7")    public String index(){        // 每个人进来先要进行加锁,key值为"good_lock"        String value = UUID.randomUUID().toString().replace("-","");        try{            // 为key加一个过期时间            Boolean flag = template.opsForValue().setIfAbsent(REDIS_LOCK, value,10L,TimeUnit.SECONDS);            // 加锁失败            if(!flag){                return "抢锁失败!";            }            System.out.println( value+ " 抢锁成功");            String result = template.opsForValue().get("goods:001");            int total = result == null ? 0 : Integer.parseInt(result);            if (total > 0) {                // 如果在此处需要调用其他微服务,处理时间较长。。。                int realTotal = total - 1;                template.opsForValue().set("goods:001", String.valueOf(realTotal));                System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001");                return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001";            } else {                System.out.println("购买商品失败,服务端口为8001");            }            return "购买商品失败,服务端口为8001";        }finally {            // 谁加的锁,谁才能删除,使用Lua脚本,进行锁的删除            Jedis jedis = null;            try{                jedis = RedisUtils.getJedis();                String script = "if redis.call("get",KEYS[1]) == ARGV[1] " +                        "then " +                        "return redis.call("del",KEYS[1]) " +                        "else " +                        "   return 0 " +                        "end";                Object eval = jedis.eval(script, Collections.singletonList(REDIS_LOCK), Collections.singletonList(value));                if("1".equals(eval.toString())){                    System.out.println("-----del redis lock ok....");                }else{                    System.out.println("-----del redis lock error ....");                }            }catch (Exception e){            }finally {                if(null != jedis){                    jedis.close();                }            }        }    }}

3.5 方式五(改进方式四)

在方式四下,规定了谁上的锁,谁才能删除,并且解决了删除操作没有原子性问题。但还没有考虑缓存续命,以及Redis集群部署下,异步复制造成的锁丢失:主节点没来得及把刚刚set进来这条数据给从节点,就挂了。所以直接上RedLockRedisson落地实现。

@RestControllerpublic class IndexController8 {    public static final String REDIS_LOCK = "good_lock";    @Autowired    StringRedisTemplate template;    @Autowired    Redisson redisson;    @RequestMapping("/buy8")    public String index(){        RLock lock = redisson.getLock(REDIS_LOCK);        lock.lock();        // 每个人进来先要进行加锁,key值为"good_lock"        String value = UUID.randomUUID().toString().replace("-","");        try{            String result = template.opsForValue().get("goods:001");            int total = result == null ? 0 : Integer.parseInt(result);            if (total > 0) {                // 如果在此处需要调用其他微服务,处理时间较长。。。                int realTotal = total - 1;                template.opsForValue().set("goods:001", String.valueOf(realTotal));                System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001");                return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001";            } else {                System.out.println("购买商品失败,服务端口为8001");            }            return "购买商品失败,服务端口为8001";        }finally {            if(lock.isLocked() && lock.isHeldByCurrentThread()){                lock.unlock();            }        }    }}

推荐学习:Redis视频教程

以上就是Redis实现分布式锁的五种方法总结的详细内容,更多请关注php中文网其它相关文章!

关键词: 购买商品 数据一致性 处理时间